

DIAMOND STRIPPING FOILS FOR THE SNS

R. W. Shaw and C. S. Feigerle Chemical Sciences Division/ORNL Dept. of Chemistry/Univ. of Tennessee

SNS Seminar March 28, 2005 Oak Ridge, TN

Overview

- SNS stripping foil application and requirements
- Preliminary BNL foil test data
- CVD diamond foils
 - Microcrystalline diamond
 - Nanocrystalline diamond
- Corrugated diamond foils
- Beam irradiation tests at BNL
- Summary and future directions

Stripping Foil Requirements

Lateral dimensions: 10-12 x 20 mm

Thickness: 1 μm (350 μg/cm²)

Mechanical support: No more than 2 edges

Time to failure: 100-200 hours at 2300 K

(GeV beam at 38 mA

during 1 ms pulse)

Preliminary BNL test results indicated that diamond is a good candidate foil material

Initial BNL Diamond Foil Experiments

- Traditional carbon foils fail within about 20-50 hours in a simulation beam (750 keV H⁻, 6.7 Hz, 2 mA during the 0.5 ms pulse).
- A commercial diamond foil survived up to 400 hours (Liaw, Lee, Tuozzolo).
- However, unsupported diamond foils are unsuitable due to CURLING before beam exposure.

BNL Carbon Stripping Foil Test Results

Fiber Supported

Window Frame

Liaw, Lee, and Tuozzolo, PAC 2001, Chicago

March 28, 2005

CVD Diamond Films

- Conventional chemical vapor deposition (CVD) diamond recipe:
 - 0.5 to 2% CH₄ in H₂ at 50-100 Torr
 - 2.45 GHz microwave plasma (or hot filament, flame)
 - Roughened silicon substrate at 800-900 °C
- Currently conducting microwave plasma growth
 - Larger film area
 - Improved thickness uniformity
 - Improved purity (no filament metal)
- Polycrystalline diamond film produced at about 1 μ m/hr rate with a grain size up to 1-10 μ m
- Vapor phase diamond growth is via a nucleation/enlargement mechanism
- A sufficiently high nucleation density must be achieved to produce a continuous film at 1 μm thickness

Diamond film grown in microwave-powered reactor,

1300~W 50~T $885~T_s$ $0.99~\mu m$ Corrugated Foil

BNL Test: > 120 Hr

Intensity

Nanocrystalline CVD Diamond Films

- Nanocrystalline diamond
 - Characteristic grain size is 5 to 50 nm
 - Grown in hot filament or microwave chambers
 - Recipe calls for dilution of the reactant gases with a considerable argon fraction (>90%)
- Can nanocrystalline character strengthen foils ???

Nanocrystalline:

Microcrystalline: $\frac{}{}$ 1 μ m

Raman spectra of nanocrystalline CVD diamond

FIG. 4. Micro-Raman spectra of HFCVD diamond grown at increasing Ar volume fraction (a) 0%; (b) 20%; (c) 50%; (d) 80%; (e) 90%; (f) 92%; (g) 94%; and (h) 95.5% for growth mixture using Ar–CH $_4$ –H $_2$.

SEM of nanocrystalline diamond film

Nano-diamond electron diffraction

10/04/01 2% CH4 / 48% H2 / 50% Ar ev21756

March 28, 2005

Intensity

Free standing nano-textured diamond film

10/4/01B from 09/13/01b.Chip2

Microwave-powered growth chamber

- 2.45 GHz
- 1500 Watt
- Uniformity:
 up to 1" φ

Microwave-powered growth chamber

Argon/CH₄ Discharge

Corrugated Diamond Pattern

depth = 20 micron

<Photolith.Vn.mdp>

Corrugated CVD diamond foil

- Si <100>
- Pattern at 50 L/in
- Trench depth = $22 \mu m$
- HF grown with argon 2% CH₄ in H₂ 50% Ar 40 Torr $T_f = 2300$ K $T_{sub} > 630$ °C
- Acid etch

Diagonal Corrugation to Pin Film Free Corner

Free standing diamond stripper foil

- Patterned Si 50 L/inch
- Scratched/seeded (0.1 μm)
- Hot filament reactor growth
 1% CH₄ in H₂
 50% Argon
- HNO₃ / HF / CH₃COOH etch

Diamond foil lifetime tests at Brookhaven 750 keV H⁻ Linac

Foil Lifetime Tests at Brookhaven Linac

Foil Lifetime (Hr)

Before

Microcrystalline, microwave-CVD diamond before and after BNL H- Beam irradiation

After 16 hours

080602, 2% CH4, 1300W

Single-edge supported foil in approx.
SNS format

#273 1%,90% 900W 1.7µm 25 L/in to 5.2 µm

Summary

- We have succeeded in preparing continuous films at 1 μm thickness, both micro- and nano-crystalline, at high nucleation density
- Foils have been tested at the BNL H⁻ beam with lifetimes (to 90% current) as long as 133 hours
 - Nanocrystalline
 - Microcrystalline
 - Corrugated
 - L-Bracket (2-edge support)
- Reproducible life currently at about > 100 hours

Future Efforts

Single-edge supported diamond foils
 2D corrugation patterns

- Lifetime testing for nano- vs micro-crystalline foils
- SNS Linac next to last stage 186 MeV (Summer 05) ???
 PSR tests ???
 Fermilab tests ???
- Process handoff and prep lab set-up for SNS

Possible foil for PSR / LANSCE / LANL test

Reference Slides

Diamond Stripping Foil Progress

Intensity

Raman spectra of CVD diamond

March 28, 2005

Pattern using a 50 line/inch photolithography mask

March 28, 2005